Outils gratuits>  
Connectez-vous !


Nouveau compte
Des millions de comptes créés sur nos sites

100% gratuit !
[Avantages]


-Accueil
- Accès rapides
- Livre d'or
- Recommander
- Signaler un bug


Recommandés :
- Jeux gratuits
- Nos autres sites



Publicités :




Cauchy-Scwartz

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cauchy-Scwartz
Message de nanii777 posté le 28-12-2023 à 00:50:15 (S | E | F)
bonsoir tout le monde, j'ai besoin d'aide pur cet exercice

Soient n appartient N* et X = (x1,x2,...xn) € Rn tels que pour tout i appartient à[1;n] : xi> 0.

1. En utilisant l'inégalité de Cauchy-Scwartz, donner un minorant strictement positif et indépendant de X, de (SIGMA xk)(SIGMA 1/xk)

2. Ce minorant est-il atteint en certains X ? Si oui, quels sonts les vecteurs X en lesquels ce minimum est atteint ?

merci d'avance


Réponse : Cauchy-Scwartz de tiruxa, postée le 28-12-2023 à 16:39:31 (S | E)
Bonjour

Appliquer l'inégalité pour les vecteurs X=(racine(x1), racine(x2),....,racine(xn))
et Y=(1/racine(x1), 1/racine(x2),....,1/racine(xn))

On trouve n² comme minorant , il est atteint lorsque tous les xk valent 1.




[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths


Partager : Facebook / Google+ / Twitter / ... 


> INFORMATIONS : Copyright (sauf jeux, qui font l'objet d'un copyright de leurs auteurs) - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée / Cookies. [Modifier vos choix]
| Jeux et outils 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès.